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Summary. — It is shown that charge renormalization corresponds to a
form of a spontaneous symmetry breakdown: although the charge operator
exists, it can no longer be written as a space integral of the charge density.
This can only happen due to the presence of zero-mass states in the theory,
in full agreement with recent results on continuous symmetry groups
in relativistic field theories.

1. — Introduetion.

Recent papers have investigated the meaning of generators of continuous
symmetry groups (generalized charges) as space integrals of densities in rela-
tivistic quantum field theories (1+%),

1t has been shown that starting from a conserved current

9j" ()

(1) =4

oz

associated to a symmetry (regarded as an invariance property of the equations
of motion and commutation relations) one can, in the absence of zero-mass
states, build a unitary operator

(2) U(t) = exp [i7Q],
such that
(3) U(r)]|0>= 10>,

where [0 i3 the vacuum state.

(1) D. KastLER, D. RoBinson and J. A. Swikca: Commun. Math. Phys., 2, 108
(1966).

(%) B. Scuroer and P. Svicuer: Commun. Math. Phys., 3, 208 (1966).

(®) J. A. Swreca: Phys. Rev. Lett., 17, 974 (1966).
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¢ is formally given by

(4) Q =1, t)d%,
where eq. (4) should be understood to mean

) 0l = tim <l [z, D jp>

with |9, |¢> normalized states out of a dense set in the Hilbert space.

When there are zero-mass states in the theory the arguments leading
to (2), (3) and (5) fail and in particular there might be no operator ¢. This
corresponds to what is called a «spontaneous breakdown of symmetry » (4).

However, even when zero-mass states are present, one can still have theories
without spontaneocusly broken symmetries, that is U(z) satisfying (2), (3)
exists and implements the symmetry but eq. (5) might no longer hold for
[v>, |p> physically relevant states.

We shall show that this is precisely what happens in guantum, electro-
dynamics corresponding to the effect of charge renormalization. We shall
also prove that for massive vector mesons coupled to conserved currents such
an effect does not oceur in accordance with general results obtained in (-2),

Another example of the failure of eq. (5) will be given in the case of the
electron gas. There, the long-range forces in the interaction cause the effect
that in a relativistic field theory is due to zero-mass states (°7),

We ghall therefore see that zero-mass states (or long-range forces in a
many-body system), besides providing a mechanism for a possible spontaneous
breakdown of symmetry, can also lead to a weaker form of breakdown. The
symmetry is still a goed one, but the usual connection between its generator
and the space integral of the density no longer holds.

2. — Results valid in the absence of zero-mass states.

We shall summarize here some of the results which follow from (*-*®), for
internal continuous symmetry groups in theories with a nonzero lowest mass,

(Y) J. GorpsToNE, A. Saram and 8. WEINBERG: Phys. Rev.. 127, 965 (1962);
Y. Namev and G. JoNa Lasizio: Phys. Rev., 122. 345 (1961); J. GoLpstoNE: Nuove
Cimento, 19. 154 (1961).

(®) R. V. LaxGE: Phys. Rev. Lett., 14. 3 (1965).

(*) G. 8. GurarNig, T. KiseLe and C. R. HaceN: Phys. Rev. Lett., 13, 585 (1964).

("y J. A, Swisca: Commun. Math. Phys., 4, 1 (1967).

(%) H. Ezawa and J. A. Swizgca: Commun. Math. Phys.. 5, 330 (1967).
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244 J. A. SWIECA

Introducing local operators 4 as Wightman pelynomials (*°) in the basie
fields @;(x) smeared out with functions with compact support

N
(6) A= |ful@y e TP (@) oo @i (£2) A%y ... A2,

L=
one hasthe symmetry at its most basielevel as a correspondence (automorphism)
(7) A—4,,

which leaves the equations of motion and commutation relationsinvariant.
The connection between (7) and the conserved current (1) is given by

d4. —
= T .= e, Al E > E,,
with
(9 P*(f=fa) =fi"(-x] fal®) falae) 'z,

with fg, f4 smooth funetions satisfying

[ fam)=1, x| <R,
fﬂ'{xn) =0, ]-ro| >d ]
P | J.faix‘.) deo=1,

and R, being such that the points

o] < d

(12) (x4, ), with
x| > R, ,

lie out of the light cone of the finite space-time region to which A is assoeiated.
Equation (8) is a more careful way of writing

(13) dd"i_' g inO;x,f}dB.r. A] . >0,
T=10

(?) R. STREATER and A. WicHTMAN: PCT, Spin, Slatistics and All That (New

York, 1964).
(*) R. Haac: Phys. Rev., 112, 669 (19538).
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which in turn would follow from jormally writing (4},

(14a) A, = exp [itQ] A exp [— izQ],
a4,
(14b) ar -M—i[Q. A],

and using local commutativity. Since one really wants to show that @ exists
it is eq. (8) that ought to be taken as a starting point and not eqs. (4), (14).

One can now define an operator @ acting on the dense set of states obtained
by applying local operators on the vacuum (local states) by

(15) QA0> = [°(fxfa), A10) , R>R,.
The () so defined is unique and Hermitian as a consequence of (cf. (24#))
(16) O|j°(fafa), 410> =0, E>R,.

One can then proceed teo build U(z)=exp [i7Q)] by a power series expan-
sien which econverges on local states (for internal symmetries) obtaining thus
a time-independent unitary operator that satisfies

(17a) U(v)[o> = |0),
(17b) U(r)Al0> = 4,]0) ,
(17¢) Ur) AU (1) = A, (on local states).

The transformation properties under the symmetry group of the asymptotic
in and out states, the multiplet structure ete., follow immediately from (17b)
by using the Haag-Ruelle (1°!) asymptotic-state construction.

Furthermore the formal relation (4) is to be replaced by (1?)

(18) YQlp> = lim {yliifafale)

with |¢), |y> states out of the dense set obtained by applying Wightman poly-
nomials with fast deereasing smearing functions on the vacuum (quasi-local
states).

Since in the absence of zero-mass states one can obtain any normalized
one-partiele state by applying a local operator smeared out with a fast decreasing
function on the vacuum (10-11)

(19) 1> :ff{.r} A(x) dz|o)

(1) D. RueLLE: Helv. Phys. Acta. 35. 147 (1962).
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246 J. A. SWIECA

with A(r) the translate of A by x, one has
(20) Q> = Rlim Aj(fzfad]1> .

Eqnation (20) constitutes the proof of the well-known statement that coupling
constants attached to conserved currents do not get renormalized (12), when
no zero-mass states are present.

3. — The case of zero-mass states.

When there are zero-mass states which are connected to the vacuum
state by the ecwrrent operator, the techniques emploved in (*?#) leading to
eqs. (17), (18), (20) no longer apply.

If the symmetry, however,is not spontaneously broken a «charge » operator
will still exist and satisfy egs. (17) and also

(21) (@, Al =[j"{fafa), A1, k>R, .

I't remains to be seen now what happens to egs. (18), (20). By using quantum
electrodynamics as an example it will be shown that eq. (20) is no longer valid
due to vacuum polarization effects which lead to a charge renormalization.
Arguments will be given later in this Seection to support our view that eq.
(18) is still valid, and a general proof presented in Appendix B.

We shall work with covariant quantum electrodynamies in the Gupta-
Bleuler gauge, and rather freely manipulate with renormalization constants
as if they were finite,

Taking the equation for the unrenormalized photon field as

(22a) LA*(z) = e,j¥(x) ,

where j#(x) satisfies the conservation law (1) and is formally given by
(22h) i) = [p(), yrp(@)]/2

one finds using equal-time commutation relations

(23a) [°.fafa)y w(@)]=w{x), R>R,,
(23b) [j(fefs, A"(@)] =0, R>R,.

(12) R. P. FEy~xmax and M. GELL-Maxx: Phys. Rev., 109, 193 (1958).
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It might happen that such a formal use of equal-time commutators leads
to wrong results and that a more careful definition of the current operators
will show that eqs. (23) do not hold. Such a possibility was first pointed out
by JoHNsoXN in his analysis of the Thirring model (**). However if one wants
to maintain the usual form of the generalized Ward identity (**) one needs (23).
This point has been recently clarified by BARDAKCT, HALPERN and SEGRE (15) (°).

Since the charge is a good quantum number in g.e.d. there exists an
operator ¢ such that '

(24a) Qs p(x)] = p(w),
(248) [Q, A#(x)]=0
and

(25) | Blo5=0,

| @iy =15,

where |1 is a normalized one-electron state.
On the other hand

(26)  lim [j(faf,)|1> = _ lim f ¥i@) Talp'— p)- pHps pip) dpdsy
e 7Rl 1 1—0%p)

where ~ indicates the Fourier transform, w,(p) is the wave function in

momentum spin space and the form faetor is given by the Feynman dia-

gram analysis

' AL i 1 7;1‘31"}{, )
Q7 — a5, ’T | SR UL S SRR [N L okl 90 ¥ L3 ar .
(27)  pili#*p> =w(p ).L(y“ ¥ ) ——— = pup),
with

k= (p’— 7,

and /7, the renormalized proper vertex, satisfies on account of the Ward
identity (1%)

o T s sl
{..80] -'!f (P . I_U} Yo { ]U’: v,

(28h) B =05 yep=ry-p =m.

(**) K. Jouxson: Nuove Cimento. 20. 773 (1961).

(") J. C. Warp: Phys. Rev., T7, 293 (1950); Y. Taxamasur: Nuove Cimento, 8,
370 (1957).

(**) K. Barpaxoer, M. B. Harperx and G. SEGRE: preprint.

() T am grateful to Prof. Th. Maris for calling my attention to their paper.
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248 J. A. SWIECA

Therefore (26), (27), (28) lead to

(29) Lim <1j(fafa)] 1> = — Zy# QY =1.

1—m(0)

The fact that the one-electron matrix elements of the charge operator
do not coincide with the matrix elements of the space integral of the charge
density although they lead to the same commutators, is due to the well-known
phenomenon of vacuum polarization (*%). Part of the charge goes to infinity and
is never picked up by integrating the density over arbitrary large volumes.

An argument now will be represented in favor of the validity of eq. (18)
although eq. (20) obviously fails. This will mean that it is due to the impos-
sibility of building a one-particle state by means of (19) with f(z) a fast
decreasing funection (since there is no mass gap between the one-electron hyper-
boloid and the continuum of scattering states) that eq. (20) breaks down.

We shall discuss this in the related but simpler problem of polarization by
an external weak charge. The induced charge density in the vacunm is
given by

(30) (@) ma— f OI@), A% a0 eo0(x) 4%’

and the induced total charge

BE) e Z,)fe(x}d’x,

(31) ”11'1'2 J(j‘(-’"}%na d*x = ?EE 1— (k) ©

which as in (29) means that a fraction (1 — Z;) of the charge goes to infinity.
If we imagine the external charge to be switched on at a finite time — T
and off at some time prior to 0, then eq. (30} can also be written as
B2 < 0= [<OlLr, 0, A% 0>

“eo0(x")g(a*) A’ = CO0[[jy(x, 0), 4°(¢,09)]]0 ,

where ¢ is a function with compaet support. With (23) and (2b) one finds
that the total induced charge in this case is zero

(33) lim f\{i"(x, 0))na@®r = (0[[Q,,4%e,09)]1/0> = 0, v >0,

(%) J. ScuwinGERr: Phys. Rev., 76. 790 (1949).
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Equation (33) can be checked directly by using the Lehman-Kiallén (17)
representation for the commutator

(2m)?

(34)  Co|ina), A%(0)]/0) — f[u—za}fcwwéiw-'-

+ o(k*) [g#k* — k) exp [— ék;x-}e(ko)]d‘k

leading to
(35) lizn f(?""(x, 0))made = lim {—I?Uv‘nl o(k)-
o —+0

w

[(1 = Zko30 (k) + (k) (k® — k.uzj]dkoe(ko)] =0,

which is zero for g§(k,) a smooth and fast decreasing function. In the static
limit g(k,) —>1/(k,— ie) there will be a nonvanishing contribution from the d(k?)
term

(36) lim[—ka}. ka(1- Zs)é(!azje{ko]dkoJ =(Z;,— 1 }fg(x) d*x ,
ko ko— ig
in accordance with (31).

The situation Just deseribed means that it takes an infinite time to induce
a nonzero total charge in the vaeuum.

The analogy with eqs. (18), (20) is clear: eq. (18) corresponds to the case
of an external charge acting during a finite time and should still be wvalid;
eq. (20) corresponds to the static limit and as shown in eq. (29) breaks down.

Tt is perhaps useful to comment at this stage that the fact that a fraction
(1 — Z;) of the bare charge goes to infinity is in no contradietion with the usual
charge renormalization

(37) e=Z}e, .

This ean be seen from dual role of the charge as a quantum number and
coupling constant. While as a quantum number the charge is reduced by
a factor Z,, the way to measure electric charge is by its role as a coupling
constant. In this case one is measuring the interaction energy which, as for the
case of a classical dieleetric (ef. Appendix A),is reduced by an amount Z, and
therefore as & c¢oupling constant the charge gets renormalized according to (37).

The physical charge operator is now conveniently defined as

(38) Q=)

(*") G. KALLEN: Helv, Phys. Acta, 25, 417 (1952); H. LEHEMANN: Nuovo Cimento,
11, 342 (1854).
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250 J. A. SWIECA
satistying

(39) A1y =e= _Lim {1|eZ3 [j"{x, 1) d%e|1>

L

W.]I{']'(E}.IS formally
(40) 0= r*fj”{x, t)dse .

Equation (40) is consgistent as long as commutators of ¢, with loeal operators
are concerned, but cannot be used for the caleulation of particle matrix elements.

We finally remark that the general statements of Sect. 2 can be directly
veritted if, instead of g.e.d., one takes a theory of massive vector mesons coﬁpled
to conserved currents Wlth no zero-mass bound states,

(41) (O + updgp(ar) = goir(w) .

In this case, ingtead of (26), (27) one has

42 li 1179 My= U _
(42) J{1_13;3 < h (Fafa)|1) ?iml—r}}“(j’?fw{ f!c P
k* o‘.{o

) M 210 0y, 5 d#n dzp’
I.-=—,u,,-— fm{kg). Y’ u(p)yip) dPpdip’,

up')
which leads to

(43) lim <1[f(fafa)|1> = <1[QIL> =
— 0

gince in the absence of zero-mass states /"(p’p) is not singular at k* — 0 and
the nsual arguments leading to Ward’s identity (28a), (28b) apply.

4. — The electron gas.

An even more drastic example of the failure of a gymbolic formula like (4)
in the ealeulation of relevant matrix elements is provided by the electron gas.
There the one «extra » electron matrix element of the integral of the density
gives (for instance in the random-phase approximation cf. (%))

ek?
44 i | olx, 1) dx|1) = ;
(44) 11_1)1;(‘1 |ff9(x_ 6 dsx|1) = ltlllu k? - ik, w)

v

(**) D. Pinus: Elementary Ercitations in Selids (New York, 1863}
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Since

(45) lim ww(k,w)— L},

ko0

with &, the Fermi-Thomas sereening vector, one obtains

(46) lim (1| olx, t)d3z[1> = 0.

Equation (46) means that the electron gas tends to (locally) neutralize any
extra charge, giving rise to screening. Despite eq. (46) the invariance of the
Wightman funetions (°) of the theory

(47) W@y o @ Yy oo yu) = Oty o @) p(y) - p(¥a) |00

with |[0> the ground state of the system, under the gauge transformation

(48) p(z) —~exp [iet]p(z) ,

implies (*1) the existence of a charge operator (), with

(49) [Qp, p(x)]=e [f{;(x, t) d3e, (=, !)] - V>,
and ’
(50) @0, =0,

which is then a measure of the number of «extra» electrons in the gas.

APPENDIX A

1t is illustrative to see the differences between the case of zero-mass states
{or long-range forces) and massive states (short-range forces) already in the
classical situation of charges in an infinitely extended dielectric medium.
The Poisson equation for the statie potential ¢ is

(A.1) '2(}': _“’o[‘:’!xt_e_?lld]
and, with
(A.2) Ooma=—ndivE=nVig,
leads to the solution

B 1 Cy an'{x’) 3.
(a3 pizl— 41 +eyn ) |x— 2’| i
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252 J. A, SWIECA

and the total charge is
(it-i) {-JOJ {Gtxs N lel} die = 1 —:ul‘fon J‘gub(:{:!} dsz’ ]

where (1 + ¢,7n)"" i3 the analog of Z; in (29),
The total energy in the dielectrie is given by

z
3 1

i

! 1
(A-'r}} H = 'ingelt{xf)w{xr) dam’ S J‘Qut{x#} [xr___ xn| Qext(xw) ds‘?"’da"'c" -

: 1+ eym 87
This leads to a conpling constant renormalization
ping

3 — __(J? Dt
(A.6) £ = TT e’

although the total charge (A.4) was reduced by a factor (1 -} eyn)™.
If one substitutes the Coulomb law by a Yukawa one

(A.T) {VE_#E}‘P= — folPest + Oial »
with (A.2) one obtains

o o 1 MUy ! , ’
AR , e B 5 I e — b} 3
s 47t(1 | go1y) f[x— x| exp [ (1 + 5y, i |] Ol &,

which leads to a mass and conventional coupling constant renscrmalization
(A.9) 9=0(1 +ngo)~t,  p=pe(1 + ngo)t.

[Towever the total «charge » is not renormalized

(f\. I 0) gEIJA( Qﬂ:t + gind} d!!:r_ el gofge:t da‘r )

in analogy with (43).

APPENDIX B

~ Weshall outline here the proof that, in a relativistic theory, if the symmetry
18 not spontaneously broken, eq. (18) holds even in the presence of zero-
magss states. With (21) and (17a)

(B.1) Ol[i*(fala); 41100 = <0|[Q, A]

6> =0, R> R,,

=

=
-
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and this implies (cf. (%))

~
(B.2)  <O|[j°(x), A]|0> :J-dzg,’ Vo,(x, ) A(x — y, x*) d% +
]
+fdx* f Voui, y) 5, Al — 3, %) 4%
[i]

with g,,(x% ¥) being of eempact support in the variable y due to the locality
of 4.
Equation (B.2) gives

(B.3)  lim <Olj*(fafa) 40> = _ lim [—'fdﬁfdsp'
1]

7R(p)—+2(p)
? \;r 2 aa? - - - y oG o
.'“&?u) fa(p)p-ay(#2, p) _J‘dxa.‘.dap.hfvpe N xz) fR{P]P ‘Uz(xs,P)} .
.'PZ zhl xz %

Since @,.(#2, p) are analytic in p being Fourier transferms of funetions
with compact support and fd(\f’fpz—'—z*) is a fast decreasing funetion pro-
viding a high mass cut-off the only possible eause for the nonvanishing of (B.3)
is the zero-mass contribution to ea,.

Taking

(B.4) a. (%2, 0) = I5(»?)

one indeed would have a result for (B.3) that depends on the way the fune-
tion fx(x) tends te unity when F—co.

The ansatz (B.4) is however incompatible with the locality of A since for
zZero-mass states

(B.5) Olj|p> = Ap*= Alp|,

which means with (B.4)

(B.6) {pldlo> ~E-pl|p|, p~0.
Considering the commutator of A+ and A4, locality requires (**)

(B.7) [<p|A[0>]*= a(p) + |plb(p) ,

with a and b analytiec funetions of p. This is incompatible with (B.6)and (B.4)
unless €= 0.

(**) H. Araxi, K. Heep and D. RuiLLe: Helv. Phys. Aeta, 35, 164 (1962).
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254 J. A, SWIECA

In order to have compativility between (B.2), (B.5) and (B.7) one must have
(B.8) {plA]0> ~Bip) , . p~0,
and the zero-mass contribution to o
(B.9) G.(x?%, p) ~ po(xt), #~0, p~0.

Inserting (B.9) into (B.3) one realizes that also the zero-mass terms go to
zero in the limit so that

(B.10) Plim {Oli*(fafa) A0 =0.
Using (17), (21) we obtain

(B.11) lim <0|Bj°(fafa) 4105 = (0|BQAJ0

for 4, B loeal operators, completitig the proof for loeal states.
It is easy to extend this result to quasi-local states.

RTIASSUNTO (%)

Si fa vedere come la rinormalizzazione di earica corrisponde ad una forma di rot-
tura spontanea della simmetria: sebbene operatore di carica esista, non puod essere
ancora seritto come un integrale spaziale della densitd di carica. Questo pud accadere
solo per la presenza nella teoria di stati di massa nulla, in pieno accordo coi recenti
risultati sui gruppi continui di simmetria ottenuti nelle teorie di campo relativistiche.

(") Traduzione a cura della Redazione.

Coxpausizoliuecst TOKH, NEPEHOPMHPOBKA M COCTOSIHMS C HYJIEBOH MACCOM.

Peswome (7). — IlokasbiBaeTcs, YTO TEPEHOPMHPOBKA 3apA/ia COOTBETCIBYeT (dopme
CIOHTAHHOIO HAPVIISHHA CHMMETPHH: XOTA ONEPATOP 3apsiaa CyLIeCTBYET, HO OH HE MOKET
D0JblIe ObITh 3AllMCaH, KdK l'[pOCTpaHCTBeH'Hblﬁ MHTErpaj OT INIOTHOCTH 3dapsod. 210
MOKET TIPOH30HTH TOJMBLKO HM3-33 HAIHYHSA COCTOAHHMIT ¢ HYIeBoil Maccoifl B TEOpHH, 4TO
HaxXOOHTCA B INOJHOM COITIACHM C HEOABHHMI pe3y/bTaTaMM B HCIPEPbIBHBIX IPYIIax
CIIMMGTpHﬁ B PENATHBACTCKHX TEOPHAX TIOTA.

(%) [lepegedeno pedaryueil.
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